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Abstract. A projection operator which maps the q-state Potts model onto an Ising model 
is investigated. The case of an approximate mapping between two-spin nearest-neighbour 
clusters on a d-dimensional hypercubic lattice is considered. In the ferromagnetic case, 
first-order transitions occur for q > q , ( d )  = 1 +exp[ZK,,(d)] 3 2, where K , , ( d )  is the critical 
Ising coupling. Among the results are q, (d )+  exp[2/(d - l ) ]  as d + 1+, q,(2) = 3.41 and 
qJ3)  = 2.56. The antiferromagnetic Potts model has no long range order for 9 > 2. 

The Potts model is a particular generalisation of the Ising model [ 1-31. Like the Ising 
model, its nearest-neighbour ( N N )  energy spectrum consistes of two levels. However, 
the two models differ in the degeneracy of these levels. The statistical variable at each 
lattice site i in the Potts model is a ‘spin’ a, which takes on q values ai = 1,2,3, . . . q. 
The q2 states available to each N N  pair are partitioned into the two energy levels with 
q states in one level and the remaining q ( q  - 1) states in the other energy level. This 
results in the reduced Potts Hamiltonian 

where 6,,, the Kronecker delta symbol, is unity if ai = aj, and zero otherwise. If the 
N N  coupling Kp> 0, the model is ferromagnetic, whereas the antiferromagnetic model 
corresponds to KP < 0. As a special case, the Ising model is recovered for q = 2. 

Although the Potts and Ising models are similar in that both are two-level systems, 
the differences in the degeneracy of the levels gives rise to very different phase transition 
properties. For example, the Ising model ( q  = 2) possesses an ordinary critical point 
at KP = Kpc( d )  for spatial dimensionalities d > 1. The only known exact Ising solution 
with a critical point is the d = 2 case, solved by Onsager [4] with Kpc(2) = In( 1 +a). 
The values Kp> Kpc(d) at zero external field correspond to a line of first-order 
transitions (coexistence curve) of the Ising model. 

On the other hand, the q > 2 Potts model displays a richer structure. For q larger 
than some critical value, qc( d ) ,  the Potts model has no critical point, only a first-order 
transition point. This was proved by Baxter [5,6] for the d = 2 case where it was found 
that the exact value is q,(2) = 4. For q S qc(d) ,  the transition is second order with 
exponents that continuously vary with q [7-lo]. 

The determination of qc( d )  has proven to be a difficult task in general. Mean-field 
(MF) theory predicts that qc( d )  = 2 for all dimensionalities [ 11, 121, in contradiction 
with results that include fluctuations [3]. In three dimensions, series expansion methods 
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indicate q,(3) = 2.57 [ 131, whereas in d = 4 -  E dimensions, renormalisation group (RG) 

calculations give q , ( 4 - ~ ) = 2 + ~ + 0 ( ~ ~ )  [14], and for d a 4 ,  q c ( d ) = 2  [14,151. An 
RG study of the mapping of the d = 2 Potts model onto an equivalent d = 1 quantum 
model yielded qc(2) = 6.81 [16]. On the other hand, approximate calculations involving 
real-space renormalisation group (RSRG) methods have obtained qc( d )  + exp[2/(d - l)]  
as d + l +  [lo,  17, 181, qc(1.58)= 12.6 [lo], qc(2)=3.81 [18], 4.08 [lo], 4.73 [8] and 
qJ2.32) = 2.85 [lo]. The success of the RSRG methods, however, is due to enlarging 
the parameter space of the Potts model ( 1 )  to include 'vacany' degrees of freedom [8]. 

In this letter we describe an alternate method for obtaining approximate values for 
qc(d) .  We wish to emphasise that, although the formalism presented here appears 
entirely general, we shall only carry out an approximate calculation at the lowest order. 
Our method relies on exploiting the qualitative similarities of the Potts and Ising 
models, and in particular, the mechanism of first-order transitions in the Ising model. 

To motivate our approach, recall that the MF results are asymptotically exact in 
the large q limit [12, 191. Near the phase transition point, the MF free energy per site 
of ( l ) ,  in units of k,T, has the Landau expansion (20) in terms of the order parameter 
s = ( q ( d q , J - 1 ) / ( q - 1 )  [3,211 

(2) 3 f (s) = fr? - U$ + u4s4 

to order s4, where the Landau coefficients are 

In (3), z is the number of N N  ( z = 2 d  in a d-dimensional hypercubic lattice). Note 
that the Ising expansion is reproduced at q = 2. The equilibrium value(s) of the order 
parameter are obtained from the usual minimisation condition 

af/as =o.  (4) 

The mechanism for the first-order transition in the M F  approximation is due to a 
non-zero u3, which occurs for q > 2 [20,21]. 

Another way to view the appearance of the first-order transition is to make a shift 
in the order parameter 

s = s o + *  ( 5 )  

where so is chosen to make the coefficient of the G 3  term identically vanish. This choice 
is so= u3/4u4. Thus (2) can be written as an expansion in 9 

f =.h - ho$+ ire,' U4q4 (6) 
where fo = f( II, = 0). The Landau coefficients of the shifted order parameter $, in terms 
of those in (2), are 

ho= -(u3/4u4)[r- (u:/2%)1 

ro = r - (3u:/4u4) (7) 

af/a$ = 0. (8) 

with u4 unchanged due to the truncation at order s4. The minimisation condition is 
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The physical content of (2) and ( 6 )  is identical. Hence, to O(t,b4), the Landau expansion 
of the Potts model is simply that of an Ising model in an external jield. It is this 
relationship between the Potts and Ising models that Aharony and Pytte [14] used in 
their RG calculation at d = 4 - E in the Ising-like region q - 2<< 1. In a sense, their 
calculation takes advantage of expanding around the MF results in both d and q. 

In terms of the order parameter +, first-order transitions occur due to the vanishing 
of the external field, more precisely, at h, = 0, r, < 0. This region is accessible since 
the transition point, h, = 0, translates to r = rl = U , ~ / ~ U ~ >  0, and hence r, = -r1/2 < 0. 
Finally, it is easy to show that the slope of the ho against T curve at the transition 
point is negative and becomes more negative monotonically as q increases, whereas 
the first-order transition temperature decreases monotonically as q increases. These 
features are qualitatively reproduced in our method. 

The result ( 6 )  shows that the Potts model can be mapped onto an equivalent 
Ising-like model in an external field in the MF approximation. We take this step further 
and propose that such a mapping can be made beyond the MF approximation for any 
d and q. This procedure is formally implemented by constructing a projection operator 
that maps the Potts Hamiltonian Xp onto an effective Hamiltonian XI with Ising 
degrees of freedom si = *1 

In (9) ,  5 is the +independent part generated by the projection and B({si}l{ai)) is the 
projection operator from Potts to Ising degrees of freedom which must satisfy the 
normalisation condition 

In general, %,({s i ) )  can be expected to contain not only single-site ('external field') 
and N N  two-spin interactions, but also multi-spin interactions. Obtaining the exact 
solution to (9) may turn out to be as difficult as solving the original problem (1). 
However, we have implemented this programme in a lowest-order cluster-type approxi- 
mation. 

Our approximation is illustrated in figure 1. Consider a Potts two-spin N N  cluster 
from the infinite lattice. This cluster is mapped onto an Ising two-spin N N  cluster. 
The Ising cluster is then imbedded into the infinite lattice. All pairs are treated on an 
equal footing in this two-spin N N  cluster approximation so the result of the mapping 
is an effective Ising model in an external field with N N  interactions only. A similar 
cluster approximation was used in the study of closed-loop phase diagrams in binary 
fluid mixtures [22] and the re-entrant isotropic-nematic transition in biopolymers [23]. 
The two-spin N N  cluster approximation is 

where KIo is the spin-independent constant generated by the cluster ( 5  = exp(zK1,N/2), 
N is the total number of lattice sites), h,  and K ,  are the effective Ising external field 
and coupling, respectively, and iP"( sisj I viaj) is the projection operator of the two-spin 
NN cluster. The projection operator must not only satisfy the normalisation (lo), but 
also have the property that hI = 0 at q = 2. A projection operator which satisfies these 
criteria is 
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Figure 1. Illustration of the mapping of the q-state Potts model onto an effective Ising 
model. (a)  A two-spin nearest-neighbour cluster from the d-dimensional hypercubic lattice 
is outlined by the broken rectangle. ( b )  In the approximate calculation, each Potts cluster 
is mapped onto an effective Ising cluster, which is then embedded into the infinite lattice. 

Let us examine our choice for the projection operator (12). We focus on the 
ferromagnetic case Kp> 0. At q = 2, all Ising clusters are mapped onto it with equal 
weight. For q > 2, disordered Potts clusters ar # a, contribute 2(q - 1) states to the 
Ising clusters (q, s,) = (+, -) and (-, +), and ( q  - l ) (q  -2) states to (-, -). The ordered 
Potts clusters 0; = a, contribute one state to (-, -) and q - 1 states to (+, +). Next, 
consider the large q limit, q >> 2, which is representative of q > 2. At high temperatures, 
Kp<< 1, disordered Potts clusters dominate and the mapping is primarily to the paramag- 
netic cluster (-, -). Hence, an Ising external magnetic field h l < O  is dynamically 
generated by the mapping. On the other hand, at low temperatures, Kp>> 1, ordered 
Potts clusters dominate and the mapping is primarily to the paramagnetic cluster (+, +). 
Therefore, an external field h, > 0 is induced by the projection operator (12). Thus, 
at an intermediate temperature, KP = KP1, h,  = 0 and a first-order transition of the Potts 
model occurs. 

Quantitative results are obtained by evaluating the statistical sum (1 1) for the spin 
configurations (+, +), (-, -) and (+, -). This gives 

KIo= fKP+{ ln{(q - 1)3[ 1 + ( q  - l ) (q  -2) exp(-K,)]} 

hl  = t  In(q - 1) - f  1n[l + ( q  - l ) ( q  -2) exp( -~ , ) ]  

KI = ~ K P  - a  ln(q - 1) +{ In[ 1 + ( q  - 1)( q - 2) exp( -ICp)]. 

In [+ %, = K~ 1 $(I  +s,s,) 

(13) 
Note that at q = 2 

(14) 
(11) 

as expected. 
Let us study the consequences of (13) for q > 2. The line of first-order transitions 

occurs at h, = 0, K ,  > K , , ( d ) ,  where K , , ( d )  > 0 is the critical ferromagnetic Ising 
coupling in d dimensions. From (13), h I = O  at the value of the Potts coupling 
KP = KP, = In( q - l) ,  the first-order transition point. The value of the Ising coupling 
at this point is just KI, = 1 ln(q - 1). As q decreses, K , ,  decreases until the first-order 
transition disappears at the critical point. Hence, we arrive at our main result 

q , ( d )  = 1+exp[2K1,(d)]22. (15) 
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Let us consider specific cases of (15). As d + I f ,  K , , ( d )  + l / (d  - 1) [24,25], thus 
qC(d)+exp[2/(d - l)]. This limiting behaviour was also found by Berker et a1 [171, 
Andelman and Berker [18] and Nienhuis et al [lo] using Migdal-Kadanoff RSRG 
methods [24,25] on the Potts lattice-gas model [8]. In two dimensions, the exact 
critical Ising coupling is K,,(2) = f ln(1 +a) [4], which gives q,(2) = 2 + a  = 3.41. In 
three dimensions, the series expansion result of Scesney [26] is K, , (3)  = 0.222, which 
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T = l / K p  

I I I I I 1 I I I 2 0  I 
I 

1.6 I- I 
3 

-A _ _ _ _ _ - - _ _ - - - _ - - - - - - -  

I I I I I I I I I I 1 
0 1 0  2 0  3 0  4 0  5 0  
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Figure 2. Plot of hIslng= h,  against T =  1/ K ,  ( a )  and KtSlng = K ,  against T (6) (cf equation 
(13))  for the ferromagnetic (Lp>O) d = 3  Potts model at q = 2 . 5 6 ( = q C ( 3 ) ) ,  3, 5 and 7 .  A 
first-order transition occurs at h,,,,, = 0, T < T,( Ising). 
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L.8 

gives qc(3) = 2.56. This value is in agreement with the l/q series expansion result of 
Kogut and Sinclair [13], qJ3) = 2.57k0.12. The d =4,  5 and 6 cases can be obtained 
with the aid of the results of Fisher and Gaunt [27]: K,,(4) = 0.15, K,,(5)  = 0.11 and 
KIC(6) = 0.09 gives qc(4) = 2.35, q c ( 5 )  = 2.25 and qC(6) = 2.20. Our results for d 3 4, 
while not equal to the exact result of Aharony and Pytte [ 141 qc( d 3 4) = 2, asymptoti- 
cally approaches their result. It is not surprising that the agreement is not quantitative 

I I I I I I I I I 

- ( b )  - 
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0 )  I I I I I 1 I 1 I 1 
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Figure 3. Plot of hlslng= h, againsr T = - I / &  (a )  and KIslng = K ,  against T ( b )  (cf equation 
(13)) for the antiferromagnetic (Kp < 0) d = 3 Potts model at the same values of q as shown 
in the ferromagnetic case, figure 2. Note that in ( a ) ,  h,,,,,<O for all T; thus there is no 
long range order. 
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for d 3 4 since d = 4 is a singular point in the (d, q )  plane whereas such a singularity 
cannot arise out of a simple finite cluster calculation. On the other hand, our results 
are not limited to d near four and produces the expected divergence in qc(d)  as d + 1+.  
Also, since (15 )  underestimates the exact result at d = 2 ,  and overestimates the exact 
result at d = 4, the d = 3 case may turn out to be close to the actual value since (15) 
must cross the exact result somewhere between two and four dimensions. This may 
account for the close agreement between our qc(3)  result and that of Kogut and Sinclair 
[ 131. Furthermore, our calculation is consistent with other evidence [3] that the q = 3, 
d = 3  Potts model is first order. 

The phase diagrams of the Ising representation of the Potts model in the two-spin 
N N  cluster approximation are shown in figures 2(a j  and ( b ) .  In figure 2(a),  note that 
the first-order transition temperature decreases as q increases, and that the slope of 
the external field h, at the transition temperature is negative and becomes more negative 
as q increases, thus quantitatively following the MF results. 

Finally, (13) shows that the effective Ising external field h, is non-vanishing for the 
antiferromagnetic Potts model K ,  < 0. Hence, we are led to conclude that there is no 
conventional long range order in the antiferromagnetic Potts model on a hypercubic 
d-dimensional lattice for q > 2 [3]. This result does not, however, preclude the existence 
of low temperature phases with algebraically decaying correlations [28] since the 
present level of approximation cannot address such phases. The phase diagrams for 
the antiferromagnetic case are shown in figures 3(a )  and ( b ) .  

In summary, we have found a mapping of the q-state Potts model onto an effective 
Ising model for general q and d in a two-spin N N  cluster approximation. Within this 
approximation, we have been able to link the critical Potts value qc(d) with the 
ferromagnetic Ising coupling K I c (  d) ,  thus providing a unifying framework for studying 
the global (d, q )  first-order phase diagram. We have found both qualitative and 
quantitative agreement with calculations based on different methods. We expect that 
larger clusters will not only improve the numerical accuracy of our results but provide 
a link to the behaviour for q 6 qc(d) which is beyond the region of applicability of 
the two-spin N N  cluster approximation. 

We would like to thank Peter Crooker and William Wilson for comments on the 
manuscript. One of us (CAV) would like to thank the Department of Physics and 
Astronomy, and the Office of Research Administration, University of Hawaii, for support 
of this research. JSW would like to thank the Department of Physics, Washington 
State University, for support. 
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